
Density Functional Theory-Based Nanostructure Investigation

Adrian Kopacz

Office of Science, Science Undergraduate Laboratory Internship (SULI)

Northwestern University

Argonne National Laboratory

Argonne, Illinois

August 18, 2005

Prepared in partial fulfillment of the requirements of the Office of Science, Department
of Energy’s Science Undergraduate Laboratory Internship under the direction of Mihai
Anitescu1 and Dan Negrut2 in the Mathematics and Computer Science Division at
Argonne National Laboratory.

Participant: _______________________________

Research Mentor: _______________________________

1Math. and Comp. Science Division, Argonne National Laboratory; anitescu@mcs.anl.gov

2Math. and Comp. Science Division, Argonne National Laboratory; negrut@mcs.anl.gov

ABSTRACT

Density Functional Theory-Based Nanostructure Investigation. ADRIAN KOPACZ

(Northwestern University, Evanston IL 60208) MIHAI ANITESCU (Mathematics and

Computer Science Division, Argonne IL 60439).

The development of software for the investigation of chemical and mechanical properties

of nanostructures promises to elucidate phenomena not observed in bulk materials. The

method formulates a two-step approach to compute the electronic density distribution in

and around a nanostructure and then the displacement of its nuclei. The Electronic

Problem employs interpolation and coupled cross-domain optimization techniques

through a process called electronic reconstruction. The Ionic Problem, within a

quasicontinuum framework, relocates the nuclei of the nanostructure given the electronic

density in the domain. The goal of this work is to implement an object-oriented

framework that will provide testing mechanisms of the evolving code. Future work will

focus on further enhancements to substantially increase the dimension of the

nanostructures that can be simulated by using approaches that include accurate density

functional theory (DFT) computation.

INTRODUCTION

A typical nanostructure has dimensions in the range of 1~100nm. The electronic structure

of such materials undergoes drastic changes at reduced dimensions. Their surface to

volume ratio is relatively high resulting in new phenomena that are not observed in bulk

materials where dimensions are on the order of microns. Nanoscale oxide structures

illustrate new regimes of behavior in chemical reactivity [13], magnetic properties [14],

charge transport [15], and optical properties [16, 17]. In order to better understand them,

it is essential to take a look at the electronic composition of these nanostructures.

To attain properties of a nanostructure, two important quantities must be calculated; the

ground state energy, 0ε and the ground state electron density,)(rρ . These two quantities

can be obtained after solving the Schrödinger’s equation (1a), an approach that scales

very unfavorably with the dimension of the problem.

��� ε= (1a)

),...,(1 Nrr� (1b)

��� ��
= +== = = −

+
−

−∇−=
N

i

N

ij ji

N

i

N

i

M

A Ai

A
i

Z

1 11 1 1

2 1
2
1

rrRr
� (1c)

where Ψ is the N-particle wave function; Η is the electronic Hamiltonian operator which

includes terms for both the potential and kinetic energy; ε is the energy of the system.

Numerous schemes emerged on computing the needed quantities; among them is a well

known Hartree-Fock approach [18]. The Hartree-Fock method is very computationally

intensive and not practical beyond few metal atoms; scales on the order of N4, where N is

the dimension of the problem, and for a more precise calculation can become as high as

N8 according to the perturbation theory [19]. Density functional theory (DFT) [4] [5]

emerged as a more feasible alternative; scales on the order of N3. DFT became a method

of choice for describing the ground state properties of metals, semiconductors, and

insulators. One of the largest known ab-initio simulations by means of DFT have been for

nonmetallic structures with up to 1,500 atoms [7]. Anitescu et al. [8] proposed a

theoretical framework for the investigation of these nanostructures at a fraction of the

cost which targets simulations of nanostructures comprised of hundreds of thousands of

atoms are possible.

The ground framework of the nanostructure methodology proposed by Anitescu et al. has

been implemented using C++. The goal of this project is to implement an object-oriented

framework that will provide testing mechanisms of the evolving code. The byproduct of

the testing effort will also be to design modules for the generation of the new

crystallographic structures as an input. For an output, the design of the module provides

an output that is compliant with visualization software, such as TECPLOT, providing

simple rotating, zooming and slicing facilities of the 3D electronic mesh and atomic

structure. The ground framework of the module also supports animation for the iterative

optimization approach.

GENERAL FRAMEWORK

Although the methodology utilizes a two-step approach, the two problems are

independent of each other according to the Born-Oppenheimer assumption [6]. When the

electronic problem is solved, the positions of the nuclei from the ionic problem are

obtained. With the positions of the nuclei fixed, the electronic density distribution is first

computed. The solution of the electronic problem then becomes input for the ionic

problem during which the positions of nuclei are changed to minimize the total energy

associated with the nanostructure, resulting in an iterative approach.

 Reconstructed

 Reconstruction

 Atomic Control Volume

 Mesh Grid Node

 Gauss Quadrature Point

Figure 1: Electronic Problem. Figure 2: Ionic Problem.

Electronic Problem

The electronic problem focuses on calculating the electronic density of the nanostructure.

Having the positions of the nuclei, the electronic density is calculated in some of the

domains, depicted in purple (figure 1). Each reconstruction sub domain is meshed and the

electronic density is calculated at each node. Using 3D interpolation over the

reconstruction domains, the electronic density in the rest of the domain is obtained. The

interpolation takes into account the deformation of the structure through a deformation

mapping. Since the value of the density in the reconstruction subdomains depends on the

value of the electron density in the reconstructed sub domains a self consistency loop is

employed.

Ionic Problem

The main focus of the ionic problem is to calculate the most stable shape of the crystal

structure. Namely, to calculate the equilibrium configuration of a nanostructure, which is

provided by the distribution of the nuclei that minimizes the energy. The whole domain is

subdivided into atomic control volumes (figure 2). Within each atomic control volume

(ACV), none or thousands of nuclei may reside. For example, if the atomic control

volume is cubic, each nucleus inside the ACV is represented by a set of 8 nodes, which

are referred to as control points. Only control points are used to impose equilibrium

conditions. Following the quasi-continuum methodology [20], the position of each

nucleus is determined relative to the position of control points via shape functions.

MATERIALS AND METHOD

The code for the object-oriented nanostructure investigation was written in C++. It can be

compiled using either MS Visual Studio C++ .NET (7.1) or GNU C++ compiler

(GCC/G++ 3.4.4). Build tools have been developed i.e. make/batch files, for both Linux

and Windows platforms. It can be interfaced to any third party optimization software

capable of solving bound constrained minimization problems being provided with the

function gradient, initial and a penalty value. Other third party software that is required to

run the code on a Linux platform includes TAO [9], PETSc [10] and MPICH2 [11]. On a

windows platform, Cygwin [12] must be installed to emulate the Linux environment.

Figure 3: Nanostructure investigation
code structure.

Currently, the structure of the code is divided into four stages: preprocessing, electronic

problem, ionic problem and post processing (figure 3). In the preprocessing stage, a

nanostructure simulation module is defined. A crystal structure of interest is defined by

the user. A cubic atomic control volume is then automatically generated for the

quasicontinuum approach. Then the crystal structure is then embedded inside the

electronic uniform mesh. Next, the initial guess for the electronic density is provided.

This could be a uniform distribution throughout the electronic problem. Finally, the

deformation map is initialized to be the identity mapping. Once the nanostructure

simulation module is defined, the electronic density distribution is then calculated. The

electronic problem can be solved both internally and externally. While not yet supported,

when solving externally, a specialized code such as NWChem or Gaussian03 can be

utilized. Internally, instead of solving the system of integral equations for a given

electronic density and the explicit form for the energy functional, using TAO one large

optimization problem is solved. Independent of the type of solver invoked, the electronic

density is the solution of the following optimization problem:

];[min AE ρρ
ρ

 (2a)

� = Ndrr)(ρ (2b)

where E is the energy, ρ is the nuclear density, and N is the number of electrons

present. Within the ionic problem, only the quasicontinuum component through the

atomic control volumes has been implemented so far. In the postprocessing stage, output

is generated for both the electronic and the crystal structure in two independent data files:

mesh zones and crystal zones. Contour plots can be generated using third party

visualization software, i.e. TECPLOT or MATLAB, to view the electronic distribution.

API Interfaces

Figure 4. Nanostructure investigation API
interfaces.

A special interface is implemented in nanostructure investigation code within the

API_Reconstruction namespace (figure 4). The interface’s object-oriented design

encourages encapsulation of data and simplicity of use. A user is able to initialize all the

parameters required for running the simulation code using third party optimization

software, without having to understand or being exposed to the inner structure of the

code. The API_NanostructureSim is the main class providing the required interface to

TAO. The constructor of this class requires the size of the electronic mesh, number of

electronic density cells in all x-, y-, z-directions, and lastly a collection of atoms in the

nanostructure. The API_crystalstructure enables a user to define a custom heterogeneous

crystal structure using the API_atom class where each atom may be assigned a different

atomic number representing a given element. An API_atom is defined by location in

space with its corresponding charge. There is also an option to create a bravais lattice; 14

different bravais lattices are supported (table 5). A crystal structure may also be

initialized via the element namespace, where the crystal structure and all the element

parameters are already predefined based on the chosen element. Within the

API_Reconstruction namespace it is possible to extend the interface. If a particular

feature is in need, it is very straightforward to provide an interface for it.

Bravais Lattices

Crystalline lattices are distinct lattice types constituted by a regular array of identical

units, periodically repeated in space [1]. In 1850, Auguste Bravais proposed a total of

fourteen bravais lattices obeying the following criteria: unit cell is the repeating unit in

the crystal, opposite faces of a unit cell are parallel and edge of the unit cell connects

equivalent points. Bravais lattices can be grouped into seven crystal systems; cubic,

tetragonal, orthorhombic, hexagonal, rhombohedral, monoclinic and triclinic. Within

each crystal system, different possible types may exist; primitive (P), body-centered (I),

2-face-centered (C) and face-centered (F). Classification of the fourteen bravais lattices

into the seven crystal systems is shown. Each crystal system and type is described by

different lattice constants a ,b , c and anglesα , β ,γ .

Assuming the following convention:

a is the magnitude of 1a α is the angle between 2a and 3a

b is the magnitude of 2a β is the angle between 1a and 3a

c is the magnitude of 3a γ is the angle between 1a and 2a

These lattices can be generated using three primitive translation vectors [2]. The

equilibrium atomic positions coincide with the linear combination of the bravais

translation vectors 1a , 2a and 3a .

332211 anananRn ++= (3)

Appendix A defines primitive translation vectors for all bravais lattices.

Cubic [P I F]

 • cba ==

•
�90=== γβα

Tetragonal [P I]

 • cba ≠=

•
�90=== γβα

Orthorhombic [P I C F]

• cba ≠≠

•
�90=== γβα

Hexagonal

 • cba ≠=

•
�90== βα

•
�120=γ

Rhombohedral

 • cba ==

•
�90≠== γβα

Monoclinic [P C]

 • cba ≠≠

•
�90== γα

•
�90≠β

Triclinic

 • cba ≠≠

•
�90≠≠≠ γβα

Table 1: 14 Bravais Lattices

RESULTS

One of the first 3D verification tests was the simulation of a single Hydrogen atom and

4096 electronic density mesh elements (figure 5). The test ran on a single 2 GHz Mobile

Intel Pentium M processor running XP Professional, compiled using GNU C++ compiler.

Simulation took 4 minutes and 20 seconds carrying out 27 iterations using TAO for the

electronic density to converge with the penalty tolerance of 0.0001. Simulation of a cubic

primitive unit cell (figure 6) comprised of 8 atoms and 6859 mesh nodes ran for 14 hours

and 12 minutes carrying out 54 iterations to converge. The same simulation was run on a

fine mesh but with a smaller electronic density mesh domain. Although the simulation

ran longer, the results unexpectedly degraded due to the artifacts that emerged at the

boundaries (figure 7). In order to obtain good results, it is crucial to define a large enough

discretization domain. Small domains lead to artifacts close to the boundaries.

Figure 5: Single atom
simulation.

 Figure 6: Cubic
primitive, unit cell
simulation (coarse).

 Figure 7: Cubic primitive,
unit cell simulation (fine).

One of the bigger simulations that were run took about 14 hours to complete and 12

iterations with the penalty tolerance of 0.001. The simulated crystal structure was a cubic

face-centered comprised of 63 crystal atoms and 59319 mesh elements. The electronic

density mesh domain was not as big as it should have been, resulting in artifacts at the

boundaries (figure 8).

Figure 8: Cubic face-centered, 2 unit cells in
x-, y-, and z-directions simulation.

DISCUSSION AND CONCLUSION

At present, there is still a great deal of work that must be done. First, the code should

include automatic mesh refinement of the electronic density mesh, for the electronic

problem. This will save a tremendous amount of computing time. As it can be seen in

figure 6, computing the electronic density with the same accuracy inside the whole

domain is inefficient. A fine mesh around the nuclei and a coarse mesh everywhere else

are essential. Next in order is implementing an interface for use of any higher order shape

function in the ionic problem. Following the quasi-continuum methodology, since the

positions of a nucleus are determined relative to the position of control points using shape

functions; it is important to specify a custom shape function. It is also vital to parallelize

the main subroutines of the code using MPICH2. This will significantly speed up the

computation time. Another goal is to extend the modeling capabilities by introducing

more elaborate energy functionals and more sophisticated DFT models for computing the

electronic density. This is an active area of research in the quantum chemistry

community.

ACKNOWLEDGEMENTS

The effort described in this paper was preformed at the Mathematics and Computer

Science Division, a part of Argonne National Lab in Argonne, Illinois. I would like to

take this opportunity to thank the Department of Energy and Office of Science for

providing me with the opportunity to participate in the exceptional Science

Undergraduate Laboratory Internship program. I would also like to express my sincere

gratitude to my mentors Mihai Anitescu and Dan Negrut for the assistance and guidance

that they have provided throughout my appointment.

REFERENCES

[1] W. Kohn, L. J. Sham, Self-consistent equations including exchange and correlation
effects. Physics Review, 140A 1133–A1138, 1965.

[2] G. Burns and A. Glazer, Space Groups for Solid State Scientists, Academic Press
1978.

[3] G. Grosso and G. P. Parravicini, Solid State Physics, Cambridge, University Press,
2000.

[4] P. Hohenberg and W. Kohn, Physics Review 136B 864, 1964.

[5] W. Kohn and L. J. Sham, Physics Review 140A 1133, 1965.

[6] M. Born and K. Huang, Dynamical Theory of Crystal Lattices, Oxford Univ. Press,
Clarendon, 1954.

[7] C. K. Skylaris, P. D. Haynes, A. A. Mostofi, M. C. Payne, Introducing ONETEP:
Linear-scaling density functional simulations on parallel computers, The Journal of
Chemical Physics, 122(8), 084119, 2005.

[8] M. Anitescu, D. Negrut, T. Munson, P. Zapol, Density Functional Theory-Based
Nanostructure Investigation: Theoretical Considerations, (in press).

[9] TAO, Toolkit for Advanced Optimization, http://www-unix.mcs.anl.gov/tao/.

[10] PETSc, Portable, Extensible Toolkit for Scientific Computation, http://www-
unix.mcs.anl.gov/petsc/petsc-2/.

[11] MPICH2, Message-Passing Interface (MPI), http://www-
unix.mcs.anl.gov/mpi/mpich2/.

[12] CYGWIN, Linux-like environment for Windows, http://www.cygwin.com/.

[13] Nanoparticles and the environment. Reviews in Mineralogy and Geochemistry,
2001.

[14] S. A. Chambers, S. Thevuthasan, R. F. C. Farrow, R. F. Marks, J. U. Thiele, L.
Folks, M. G. Samant, A. J. Kellock, N. Ruzycki, D. L. Ederer, and U. Diebold, Epitaxial
growth and properties of ferromagnetic co-doped TiO2 anatase, Applied Physics Letters,
79, 3467-3469, 2001.

[15] S. Azad, O. A. Marina, C. M. Wang, L. Saraf, V. Shutthanandan, D. E. McCready,
A. El-Azab, J. E. Jaffe, M. Engelhard, C. Peden, and S. Thevuthasan, Nanoscale effects
on ion conductance of layer-by-layer structures of gadolinia-doped ceria and zirconia,
Applied Physics Letters, (to appear).

[16] J. H. Sun, W.-H. Fan, Y. Xu, D. Wu, and Y.-H. Sun, Nano-sized SiO2 sol-gel for
structure-controlled optical coatings, Molecular Crystals and Liquid Crystals, 337, 85-88,
1999.

[17] A. Perera and J. Krusius, All-level electron-beam lithography for trench isolated
nano-metal-oxide semiconductor devices, Journal of Vacuum Science and Technology B,
8, 1343-1347, 1990.

[18] A. Szabo and N. Ostlund, Modern Quantum Chemistry, Dover, 1989.

[19] C. Møller and M. S. Plesset, Phys. Rev. 46, 618 (1934).

[20] E. Tadmor, M. Ortiz, and R. Phillips, Quasicontinuum analysis of defects in solids,
Philosophical Magazine A, 73, 1529–1563, 1996.

APPENDIX

A. Primitive vectors for bravais lattices.

Cubic

Primitive

�
�
�

�

�

�
�
�

�

�

=
0
0

1

1 aa
�
�
�

�

�

�
�
�

�

�

=
0
1

0

2 ba
�
�
�

�

�

�
�
�

�

�

=
1
0

0

3 ca

Body-centered

�
�
�

�

�

�
�
�

�

�

−=
1
1

1

21

a
a

�
�
�

�

�

�
�
�

�

�

−
=

1
1

1

22

b
a

�
�
�

�

�

�
�
�

�

�−
=

1
1

1

23

c
a

Face-centered

�
�
�

�

�

�
�
�

�

�

=
1
0

1

21

a
a

�
�
�

�

�

�
�
�

�

�

=
0
1

1

22

b
a

�
�
�

�

�

�
�
�

�

�

=
1
1

0

23

c
a

Tetragonal
Primitive

Same as cubic primitive
Body-centered

�
�
�

�

�

�
�
�

�

�

−=
c

b

a

a
2
1

1

�
�
�

�

�

�
�
�

�

�

−
=

c

b

a

a
2
1

2

�
�
�

�

�

�
�
�

�

�−
=

c

b

a

a
2
1

3

Orthorhombic
Primitive
 Same as cubic primitive
2-Face-cetnered

�
�
�

�

�

�
�
�

�

�

−=
0

2
1

1 b

a

a
�
�
�

�

�

�
�
�

�

�

=
0

2
1

2 b

a

a
�
�
�

�

�

�
�
�

�

�

=
c

a 0

0

2
1

3

Body-centered
 Same as tetragonal body-centered
Face-centered

�
�
�

�

�

�
�
�

�

�

=
c

a

a 0
2
1

1

�
�
�

�

�

�
�
�

�

�

=
0

2
1

2 b

a

a
�
�
�

�

�

�
�
�

�

�

=
c

ba

0

2
1

3

Hexagonal

�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�

�

�

−=

0
2
1
4
3

1 aa
�
�
�

�

�

�
�
�

�

�

=
0
1

0

2 ba
�
�
�

�

�

�
�
�

�

�

=
1
0

0

3 ca

Rhombohedral

()

()�
�
�
�
�

�

�

�
�
�
�
�

�

�

−−

−

=

γ

γ

cos1
3
2

1

0

cos1
3
2

1 aa

()

()

()
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�

�

�

−−

−

−−

=

γ

γ

γ

cos1
3
2

1

cos1
2
1

cos1
3
2

2
1

2 ba

()

()

()
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�

�

�

−−

−−

−−

=

γ

γ

γ

cos1
3
2

1

cos1
2
1

cos1
3
2

2
1

3 ca

Monoclinic
Primitive

Case �90== βγ

�
�
�

�

�

�
�
�

�

�

=
0
0

1

1 aa
�
�
�

�

�

�
�
�

�

�

=
0
1

0

2 ba
�
�
�

�

�

�
�
�

�

�

=
α
α

sin
cos

0

3 ca

Case �90== αγ

�
�
�

�

�

�
�
�

�

�

=
0
0

1

1 aa
�
�
�

�

�

�
�
�

�

�

=
0
1

0

2 ba
�
�
�

�

�

�
�
�

�

�

=
α

α

sin
0

cos

3 ca

Case �90== αβ

�
�
�

�

�

�
�
�

�

�

=
0
0

1

1 aa
�
�
�

�

�

�
�
�

�

�

=
0

sin

cos

2 γ
γ

ba
�
�
�

�

�

�
�
�

�

�

=
1
0

0

3 ca

2-Face-cetnered
Case �90== βγ

�
�
�
�
�
�

�

�

�
�
�
�
�
�

�

�

−

−=

2
sin

2
cos
2
1

1

α

α
aa

�
�
�

�

�

�
�
�

�

�

=
0
1

0

2 ba

�
�
�
�
�
�

�

�

�
�
�
�
�
�

�

�

=

2
sin

2
cos

2
1

3

α

α
ca

Case �90== αγ

�
�
�
�
�
�

�

�

�
�
�
�
�
�

�

�

=

0
2
1
2
1

1 aa

�
�
�
�
�
�

�

�

�
�
�
�
�
�

�

�−

=

0
2
1
2
1

2 ba
�
�
�

�

�

�
�
�

�

�

=
β

β

sin
0

cos

3 ca

Case �90== αβ

�
�
�

�

�

�
�
�

�

�

=
0
0

1

1 aa

�
�
�
�
�
�

�

�

�
�
�
�
�
�

�

�

=

2
1
2

sin
2

cos

2

γ

γ

ba

�
�
�
�
�
�

�

�

�
�
�
�
�
�

�

�

−

−

=

2
1
2

sin
2

cos

3

γ

γ

ca

Triclinic

�
�
�

�

�

�
�
�

�

�

=
0
0

1

1 aa
�
�
�

�

�

�
�
�

�

�

=
0

sin

cos

2 γ
γ

ba

�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�

�

�

+++−−−

−=

γ
αβγαβγ

γ
γβα

β

sin
coscoscoscoscoscos1

sin
coscoscos

cos

222

3 ca

